If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x^2+16x=0
a = -8; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-8)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-8}=\frac{-32}{-16} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-8}=\frac{0}{-16} =0 $
| -156=-3.9r | | 10v+75=9v+76 | | 1/5x+12=x-12 | | 8^1-9x=8^5x-8 | | 15n=180 | | V+30=3v | | -90=3(4n+2) | | 70x+1500=x | | -179=-n-7(1+6n) | | 16-4x/3x-18=0 | | -184=-2x-6(-4+4x) | | x=8(6x+7) | | 4x+20/2=20 | | X^2-8x-3x+24=x^2+5x+8x+40 | | 129=-3(7a+8) | | 3(x+9)=7(x+1 | | 8^1-9x=8^5x-9 | | 6x+2=-4=(x+2) | | 110=5x+5(x+8) | | 9-5x=25 | | 7x÷3x-4+2x÷6-x-10=0 | | H=-16t+15t+5 | | 3(4a-2)=-90 | | -165=3(8k+1) | | 8x÷5=9.2 | | (6x+3)=4x+1 | | -90=5(6-4x) | | 2^x+4=32 | | 8(1-4n)=-120 | | -22+2=(x-10) | | 11/30=16.6/x | | 3x=7(x-4) |